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Abstract

The test section walls of the NASA Langley Research Center 14- by
22-Foot Subsonic Tunnel are known to move under thermal and pressure
loads.  Videogrammetry was used to measure wall motion during the
summer of 2002.  In addition, a laser distancemeter was used to measure
the relative distance between the test section walls at a single point.
Distancemeter and videogrammetry results were consistent.  Data were
analyzed as a function of temperature and pressure to determine their
effects on wall motion.  Data were collected between 50 and 100°F, 0
and 0.315 Mach, and dynamic pressures of 0 and 120 psf.  The overall
motion of each wall was found to be less than 0.25 in. and less than
facility personnel anticipated.  The results show how motion depends on
the temperature and pressure inside the test section as well as the
position of the boundary layer vane.  The repeatability of the measure-
ments was ±0.06 in.  This report describes the methods used to record
the motion of the test section walls and the results of the data analysis.
Future facility plans include the development of a suitable wall restraint
system and the determination of the effects of the wall motion on tunnel
calibration.

Introduction

Accurate measurements of wind tunnel models
are essential in understanding aerodynamic per-
formance.  Subtle changes in tunnel airflow can
affect the accuracy of a measurement.  At the
Langley 14- by 22-Foot Subsonic Tunnel (ref. 1),
the two test section walls are known to move
under thermal and pressure loads.  According to
facility personnel, previous measurements indi-
cated the wall motion is less than 1 in., but the
effect of the motion on the facility’s structure and
the tunnel calibration is unknown.  Facility per-
sonnel are interested in restraining the walls but
require a clearer definition of the effects under
thermal and pressure loads and of the range
of motion prior to designing a solution.  This
requirement exists because the design will depend
on how much the walls are moving.  Personnel
are interested in understanding the wall motion to
determine the effect on the tunnel calibration and
if any corrections are needed.

A wall measurement test was performed using
two videogrammetric measurement systems to
characterize the motion of both test section walls
and to correlate those results with the tunnel

parameters to determine the thermal and pressure
effects.  The systems were used to simultaneously
measure both test section walls to determine the
magnitude, direction, and repeatability of the
motion.  Measurements were taken from April 17
to May 24, 2002, during the tunnel’s calibration.
In addition to the videogrammetric systems, a
commercial portable laser distancemeter was used
to measure the distance between the two walls at a
single point.

Facility

The Langley 14- by 22-Foot Subsonic Tunnel
is an atmospheric, closed return tunnel with a test
section 14.5 ft high, 21.75 ft wide, and 50 ft long
that can reach a velocity of 348 ft/s with a dy-
namic pressure of 144 psf.  The Reynolds number
per foot ranges from 0 to 2.2 × 106.  The flow in
the closed test section configuration is relatively
uniform with a velocity fluctuation of 0.1 percent
or less.  When the test section is not in the fully
closed configuration, the test section velocity is
lower and the turbulence level is higher.  Test
section airflow is produced by a 40-ft diameter,
9-bladed fan powered by a 6650-hp alternating-
current induction motor in tandem with a 1350-hp
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direct current motor.  The tunnel has a set of flow
control vanes to maintain close control of the
speed for low-speed testing (ref. 2).

The facility has two main configurations, the
open and closed test sections, and figure 1 shows
an inside view of the closed test section.  In the
open test section, the walls and ceiling are raised
creating an open test area where the flow is not
restricted.  The open test section is used for test-
ing free flight and rotorcraft models.  The flow is
funneled back into the tunnel circuit with three
flow collectors, which are large metal barriers
brought together to make a funnel shape.  For the
closed test section, the flow collectors are pushed
back, secured into position, and the test section
walls and ceiling are lowered.  Both test section
walls are 50 ft long and 14 ft high.  Each wall has
three main columns that are tapered at the bottom
to fit into mounting holes in the concrete floor.
The three columns are supported at the top with
trusses.  Once the walls are in place, they are
pinned at the floor and are thought to have little or
no forward and aft motion.  However, the front
sections of the walls are neither supported at the
top nor pinned at the bottom and are thought to
move in as the tunnel is brought on line and move
out as the temperature in the tunnel increases.

Measurement Systems

A nonintrusive videogrammetric measurement
system was used to measure the motion of reflec-
tive targets attached to the test section walls.  A
separate videogrammetric measurement system,
or VMS, was used to measure each test section
wall.  The VMS is a two-camera version of the
videogrammetric model deformation (VMD)
measurement system (refs. 3, 4, and 5).  These
systems use off-the-shelf components and a
target-tracking software program developed
in-house that automatically locates and identifies
targets on wind tunnel models for aerodynamic
measurements such as attitude and deformation.
The program acquires 30 images per second from
a camera, identifies all targets within the images,
and computes the X-Y-Z coordinates for each
target. Wind tunnel parameters, such as tempera-
ture and pressure, can be received from the

tunnel’s data acquisition system (DAS) via a net-
work connection and saved along with the target
data.  Applications for videogrammetry include
measurements of model deformation, wing twist,
flap angle, and now large structure motion.

VMS Equipment Configuration

For the wall motion measurement test, two
videogrammetric measurement systems were
placed in the test area outside the test section.
One system was set up to record the motion of the
north test section wall while the other system
recorded the motion of the south wall.  The same
equipment, calibration procedure, target arrange-
ment, and program settings were used to config-
ure each system.  The equipment used is listed in
table 1.  The computers were located in the con-
trol room.  The cameras and other equipment
were mounted on the tunnel’s flow collectors.
Figure 2 shows the locations of two cameras, light
sources, and power supplies on the north flow
collector.  The configuration was repeated on the
south flow collector.  A close-up of a camera and
light source on the bottom of the south flow col-
lector is shown in figure 3.  The cameras were
able to view over half of the wall without
restricting access to the test section.  A 12.5-mm
lens was attached to each camera to obtain the
best view.  Twelve 2 in. round targets were placed
on each wall.  Figures 4 and 5 show the target
layout on the outside of the north and south test
section walls and the X-Y-Z coordinate system.
The targets consisted of retroreflective tape and
were placed in the locations indicated in the fig-
ures.  For target numbers 7 and 8, 4-in. squares
were used to ensure that the cameras could view
them.  Targets 10, 11, and 12 are on the front of
the walls where the flow enters the test section.
All of the camera images were fed back to the
computers in the control room using RG-59
coaxial cable.  Each system was calibrated and
configured to match the tunnel’s X-Y-Z coordi-
nate system with the positive X-axis along the
flow and the positive Z-axis vertical with the
positive Y-axis forming a right hand coordinate
system.  Figure 6 is a screen capture showing the
two camera images and the wind tunnel condi-
tions window.  The program was configured to



3

record the tunnel parameters that are listed in
table 2.  To match the tunnel’s data collection, the
program was set to collect 8 s worth of data for
each data point.  An external trigger pulse was
used to synchronize the data collection of the
VMS and the tunnel’s DAS.  The VMS received a
5-volt pulse through a serial port on the computer
allowing the system to operate autonomously.
Data were collected at various times of the day
and night during the tunnel’s calibration test to
determine temperature effects.

Portable Laser Distancemeter

Simultaneously with the VMS, a portable laser
distancemeter was used to measure the relative
distance between the test section walls at a single
point.  The distancemeter used was a DISTO
pro4a produced by Leica Geosystems (refs. 6 and
7) that has a typical measurement accuracy of
±0.06 in. and a range of 0.98 to 328 ft.  The dis-
tancemeter uses a class 2 laser and is capable of
being remotely operated from a computer via an
RS-232 serial port using Lecia’s DISTO online
software.  For the wall measurement, the dis-
tancemeter was attached to a light fixture on the
outside of the south wall near the top, close to
target number 6.  Figure 7 is a top view diagram
of the test area showing the test section walls and
the location of the meter.  This location put the
meter at approximately 22 ft from the front of the
wall and 10.5 ft up.  The meter was aligned to
measure straight across to the north wall.  For the
remote operation, the interface cable for the dis-
tancemeter was extended 75 ft to a computer lo-
cated in the control room.  The distancemeter was
configured to automaticaly transfer a single
measurement every 5 s once it was started.  Mea-
surements were recorded before, during, and after
each tunnel run.

Summary of Results

The data provided by the VMS are in the form
of X, Y, and Z values for each target.  For this
test, however, the main focus was on the motion
of the walls in the Y direction, which is motion
into or away from the test section.  All data points
were reduced to delta Y values in inches to

indicate the displacement along the Y-axis from a
reference point.  The reference point was data
point 858 recorded at a wind off condition.  The
delta Y values have a plus or minus sign to indi-
cate the direction along the Y-axis.  For the north
wall, positive Y is to the right or into the test sec-
tion.  For the south wall, positive Y is also to the
right but away from the test section.  In this case,
a positive delta Y for a north wall target and a
negative delta Y for a south wall target would
mean the two targets on each wall moved inward.
Also in this summary, references will be made to
individual targets and groups of targets to indicate
a particular section of a wall.  Looking at the tar-
get layout for either wall, targets 1 through 6 are
in the midsection of the wall while targets 9
through 12 are in the front section.  In the mid-
section, targets 3 and 6 are at the top and targets 2
and 5 are in the middle with targets 1 and 4 at the
bottom.

Temperature

Table 3 shows how the temperature inside the
test section affected the wall motion.  The data
points used in the table were between points 659
and 915 and were at the tunnel condition 120
Delta Pressure Indicated High Side or DPIHS.
DPIHS is a measured value used to calculate Q,
the dynamic pressure inside the test section.  The
mean target displacements along the Y-axis are
from the wind off reference point.  All data points
fell within 70 and 80 °F or 90 and 101 °F with
none between 80 and 90 °F.  The column labeled
“Diff.” is the difference between the two means
for each target.  The differences show that the
walls are moving as the temperature increases.
For the north wall, the positive means and differ-
ences indicate the midsection moves inward as the
temperature increases.  The effect is the same on
the south wall, which is shown by the negative
numbers. The front section of each wall moves
outward as the temperature increases.

Pressure

Figures 8, 9, and 10 show how the walls were
affected by the pressure, or DPIHS.  The data
points used for the figures were between points
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990 and 1125 and were within a temperature
range of 85 to 101 °F.  Each figure contains two
graphs showing displacement data for each wall
with the black data points for the north wall and
the gray data points for the south wall.  Figure 8
shows the effect on the top and middle of the
midsection of each wall as pressure inside the
test section increases from 0, or wind off, to
120 DPIHS.  The data show the north wall mov-
ing in a positive Y direction and the south wall
moving in a negative Y direction.  This indicates
an increase in DPIHS and causes the walls to
move inward.  The bottom of the midsection is
moving inward as well but the displacement is
definitely less, which is shown in figure 9.  The
pressure increase does not appear to affect the
front section of the wall in the same way.  Fig-
ure 10 shows the effect of pressure on the front
section of each wall.  The data show the front
sections are not affected by DPIHS except for the
south wall targets, 10 and 11, which indicates a
slight outward movement.

Boundary Layer Position

The boundary layer position is a tunnel
parameter that refers to the position of the bound-
ary layer vane.  The vane is a large butterfly valve
used to draw off the boundary layer (ref. 1).  The
boundary layer position indicates the position
of the vane from 0 percent, or suction off, up to
100 percent open, or suction on.  Figures 11 and
12 show the effect of the boundary layer position
on the midsection.  The data in figure 11 show the
top and middle of the midsections move inward
more with the suction off than with suction on.  In
figures 12 and 13, the data show the bottom of the
midsections and the front sections were not
affected by the boundary layer position.

Repeatability

The wall motion data were analyzed for re-
peatability and the results are shown in table 4.
The data points analyzed were at temperatures
ranging between 72 and 76 °F, with all points at
either wind off condition or at 120 DPIHS,
0 boundary layer condition.  The numbers under
the north wall and south wall columns are the

standard deviation in inches from the reference
point 858.  The data show the wall motion
repeated to within 0.06 in. in either direction
along the Y-axis.

Comparison: VMS Versus Distancemeter

A comparison of the VMS data and the dis-
tancemeter data was studied for several test runs.
All of the distancemeter data showed a decrease
in the distance of the test section walls, indicating
an inward wall motion, which agreed with the
VMS data.  For example, figure 14 shows the data
set collected by the distancemeter during test
run 204, which was a typical data set.  The graph
shows the wall to wall displacement over time as
the tunnel went from 0.5 up to 120 DPIHS and
then back to 0.5.  The number labels inside the
graph represent DPIHS.  The picture inside the
graph is an inside view of the test section with an
illustration of where the measurement was made.
The distance between the walls decreases as the
pressure increases, and the distance decreased by
0.23 in. at 120 DPIHS, which is consistent with
the VMS data.  The VMS data shown in figure 15
are for target 6 during the same test run, 204.
Target 6 was the closest target to the distance-
meter and, at 120 DPIHS, the VMS recorded a
displacement of +0.144 in. for the north wall and
–0.073 in. for the south wall.  Because both VMS
readings indicate inward movement, the results
are added for a total displacement of 0.217 in.

Concluding Remarks

Two videogrammetric measurement systems
and a laser distancemeter were used to measure
the motion of the two test section walls at the
Langley 14- by 22-Foot Subsonic Tunnel.  The
overall motion of each wall was less than 0.25 in.
and less than facility personnel anticipated.  The
motion is caused by changes in the temperature
and pressure inside the test section and the posi-
tion of the boundary layer vane.  The mean
repeatability was ±0.06 in.  Future facility plans
include the development of a suitable wall
restraint system and the determination of the
effects of the wall motion on tunnel calibration.
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Table 1.  VMS Equipment List

Description Model # Quantity

Hitachi CCD camera KP-M1U 2

12.5-mm camera lens 2

Fostec fiber optic light source 2

Panasonic video monitor TR-990 C 2

Frame Grabber Matrox STD board Meteor II 2

STD cable STD-BNC-13 2

Interlink personal computer 1

NEC LCD1700V flat monitor 1

Power strip/surge protector 3

Hitachi AC adapter AP-130U 2

Junction box 2

Hitachi camera cable C-501KS 2

Coaxial cable RG-59 4

3M Retroreflective tape

Ames 54 target calibration plate

Table 2.  Wind Tunnel Parameters List

TEST Test number

RUN Run number

POINT Point number

ID Data point identification

DATE Date

TIME Time

MACH Mach number

DPIHS Delta Pressure Indicated High Side (used to calculate Q)

TA Temperature inside the test section

PTOT Total pressure

BLVIVPOS Boundary layer guide vane position

VANEP Downstream vane position

TWALLS South wall skin temperature

TWALLP Wall post temperature on the south side

TAIR Outside air temperature
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Table 3.  Temperature Effects at 120 DPIHS

Mean delta Y in inches for data points 659–915

North wall South wallTarget

70 to 80 °F 90 to 100 °F Diff. 70 to 80 °F 90 to 100 °F Diff.

  3 0.047   0.100   0.053 −0.040 −0.084 −0.044

  6 0.054   0.078   0.024 −0.058 −0.077 −0.019

Mid-
section

  2 0.038   0.113   0.076 −0.045 −0.085 −0.040

  5 0.059   0.093   0.034 −0.065 −0.092 −0.027

  1 0.005   0.043   0.038 −0.032 −0.074 −0.042

Moving
inward

  4 0.009   0.034   0.025 −0.037 −0.061 −0.024

  8 0.051 −0.003 −0.054 −0.070   0.021   0.091

  7 0.031 −0.014 −0.045 −0.046   0.028   0.074

Front
section

  9 0.103   0.016 −0.087 −0.074 −0.003   0.071

11 0.160 −0.060 −0.220   0.099   0.300   0.201

10 0.179 −0.073 −0.252 −0.087   0.229   0.316

Moving
outward

Table 4.  Repeatability Between 72 and 76 °F

Standard deviation at “Wind OFF”

Midsection Front section
Target

North wall South wall
Target

North wall South wall

3 0.016 0.007 8 0.016 0.017

6 0.013 0.007 7 0.015 0.023

2 0.011 0.005 9 0.032 0.015

5 0.016 0.006 10 0.021 0.023

1 0.009 0.004 11 0.015 0.065

4 0.016 0.007 12 0.026 0.062

Standard deviation at 120 DPIHS and 0 BL

3 0.056 0.020 8 0.011 0.021

6 0.055 0.022 7 0.013 0.030

2 0.039 0.013 9 0.018 0.020

5 0.027 0.016 10 0.055 0.027

1 0.018 0.009 11 0.023 0.030

4 0.055 0.009 12 0.034 0.090
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Figure 1.  Inside view of test section.
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Figure 2.  Equipment locations on north flow collector.
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Figure 3.  Close-up of camera mounts on south flow collector.
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Figure 6.  Screen capture of VMS program.
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Figure 7.  Top view diagram of test area.
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The test section walls of the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel are known to move under thermal and 
pressure loads.  Videogrammetry was used to measure wall motion during the summer of 2002.  In addition, a laser distancemeter was used 
to measure the relative distance between the test section walls at a single point.  Distancemeter and videogrammetry results were consistent.  
Data were analyzed as a function of temperature and pressure to determine their effects on wall motion.  Data were collected between 50 and 
100 ºF, 0 and 0.315 Mach, and dynamic pressures of 0 and 120 psf.  The overall motion of each wall was found to be less than 0.25 in. and 
less than facility personnel anticipated.  The results show how motion depends on the temperature and pressure inside the test section as well 
as the position of the boundary layer vane.  The repeatability of the measurements was ±0.06 in.  This report describes the methods used to 
record the motion of the test section walls and the results of the data analysis.  Future facility plans include the development of a suitable 
wall restraint system and the determination of the effects of the wall motion on tunnel calibration.
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